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1 Introduction

A discrete event system is a system in which events occur instantaneously, causing a discrete change
in the system state. Examples of such systems are telephone networks, communication protocols, and
manufacturing systems. In certain cases, automatic control can be applied to these systems by the
enabling and disabling of particular system events. The supervisory control framework of Ramadge and
Wonham [2, 3] was developed as a theory for the synthesis of a controller that ensures the system has
a desirable closed loop behavior.

Most research in this field has concentrated on the logical sequencing of events, and abstracted away
the actual timing delays between events. The correct behavior of hard real-time systems depends on the
actual delay values between events. For example, in manufacturing systems, processing must mostly be
achieved within certain time windows if it is to be acceptable. The automation of transport systems,
such as railway and flight control, depends critically on reaction times. Most computer networks demand
a maximal response time. In this paper, we extend the basic theory to a supervisory control theory for
timed execution sequences.

The major challenge is to integrate time explicitly in a formalism suited for specification and syn-
thesis. Two approaches have been considered previously. Discrete-time has been modeled by Brave and
Heymann [4] and Golaszewski and Ramadge [5]. Here the domain of integers is used to model time.
These models specify a priori the smallest measurable time unit. It is assumed this time quantum
is sufficiently small for an accurate representation of system behavior. The fictitious clock approach
includes an explicit tick transition making time a global state variable [6, 7]. Each tick increments time
by some predetermined time quantum. In this model, events between the i-th and (i+1)-th clock ticks
are assumed to occur at some unspecified time between time ¢ and i 4+ 1. Thus it is impossible to know
the exact time delay between any two events. The model can be interpreted as an approximation to
real-time, where events between time ¢ and ¢ + 1 have their occurrence times truncated to 7.

In this paper we use timed traces defined over a dense domain of time. An exact occurrence time
is associated with each event [8, 9, 10, 11]. This way of representing real-time behavior seems most
natural to the authors, as it imposes a minimal set of restrictions on the modeling framework. Events
may occur arbitrarily close to one another and their timing information is modeled exactly. We reiterate
from [12] four strong reasons why a dense model of time is appropriate. A dense model of time is needed
for correctness. Alur gives an example of an asynchronous circuit subject to bounded inertial delays,
where fixing in advance the time quantum for the discrete-time and fictitious clock models gives an
incorrect reachability analysis. The dense-time model is more ezpressive than the others. Composition
of processes is straightforward in the dense-time model. For the other two models however, prior
knowledge of the time quantum of other processes is required for accurate composition. Finally some
important problems for finite-state systems have the same complezity using a dense-time model as for
the other models. Indeed this turns out to be the case for the supervisory control problem for the
finite-state timed systems studied here.

We use Alur and Dill’s timed automata to describe the behavior of finite-state timed discrete event

systems. These automata are interpreted over the domain of real numbers. They are well-suited for




expressing timing constraints over concurrent systems, because they can express independent timing
conditions on each system component. Any finite number of system timers can be accommodated.
Although not done here, they may also be interpreted over a discrete time domain.

Besides using a different time model, the related models mentioned above have various other draw-
backs. Brave and Heymann [4], and Golaszewski and Ramadge [5], who use a discrete model of time,
are restricted to the use of only a single system timer. This prohibits, for instance, even very simple
composition of timed processes. Ostroff and Wonham [7, 13] use a fictitious clock model. Their real-time
systems are not necessarily finite-state, and so they are unable to give synthesis algorithms for their
model. They suggest instead a sound but incomplete methodology.

The motivation in examining infinite executions is to mode] nonterminating processes, and reason
about the limiting behavior of a system, such as the fair composition of concurrent components. Various
researchers have considered supervisory control over infinite strings [14, 15, 16, 17].

We give necessary and sufficient conditions for the existence of a controller in the case of both finite
and infinite timed traces. We show that in certain cases it is possible to find automatically a finite-
state supervisor for the supremal controllable sublanguage of a given timed behavior. The synthesis
procedures build on untiming the timed automata and reducing a timed supervisory control problem to
an untimed problem. The latter can then be solved using the standard, untimed techniques.

The rest of this paper is organized as follows. In Section 2, we provide some basic definitions for
untimed languages and automata. Section 3 is mainly a review of familiar results from supervisory
control theory. Timed traces are introduced in Section 4. The next two sections (5 and 6) outline how
supervisory control theory can be extended first to languages of finite timed executions, and then to
languages of infinite timed executions. A timed supervisory control problem is formulated. Section 7
describes a form of timed automata that can be used to model timed languages. Section 8 explains how
timed languages can be transformed into equivalent untimed languages. The following section uses this
untiming transformation to convert the timed supervisory control problem into an untimed supervisory
control problem. In Section 9, algorithms are provided for controller synthesis from automata speci-
fications. Finally we provide two illustrative examples in Section 10, and offer concluding remarks in
Section 11.

The characterization of the infinite trace problem in terms of finite traces for both the timed and

untimed case under a closedness assumption for the specification can be found in Appendix B.

2 Preliminaries

Let X be a finite alphabet of symbols. Let £* denote the set of all finite sequences over ¥, and ¥ the
set of all w-sequences over X. We abbreviate £* UX¥ by £*°. We use len(s) to denote the length of
s; if s € £¥, then len(s) = w. For an element s € £, we let 5; denote its component at the (i--1)-th
position, if 0 < i < len(s). The symbol X denotes the empty string. A language L over L is any subset
of . It is a language of finite (infinite) strings if it is a subset of =* (X*). The concatenation of a
string s € £* with the symbol ¢ € T is represented by the string s.o € £*.

A finite string t € I* is a prefiz of s if len(t) < len(s) and t; = s; for 0 < i < len(t). Let pr(L)




denote the set of prefixes of L. Suppose L and K are languages of finite strings. We say L is prefiz-closed
if L = pr(L). The language K is L-closed if pr(K)NL = K. If K C L, it suffices that pr(K)NL C K
for K to be L-closed. The limit of L, denoted L™, is the set of all infinite strings with infinitely many
prefixes in L. For languages B and S of infinite traces, B is closed relative to S if pr(B)*® NS = B.
Notice that when B C S, it is true that B C pr(B)® N S, and hence that B is closed relative to S if
and only if pr(B)* NS C B.

A transition table T is a tuple (X, Q, 6, I), where X is a finite alphabet of transition symbols, Q is
a finite set of automaton states, and 6 : @ x £ — 29 is a partial transition function mapping a state
and a transition symbol to a set of states. If ¢’ is in 6(g, ¢), then it is possible to move from state ¢ to
q' accepting the symbol 6. I C @ is a set of initial states. The transition table is deterministic if its
transition function is deterministic, i.e. there exists only one initial state, i.e. if the set I is a singleton
{g0} for some go € Q, and for every ¢ and o, if §(q, o) is defined it is is a singleton. A run of 7 on the
string s € X~ is a sequence ¢ of states such that gq is in I, g;4+1 is in 6(gi,s;) for 0 < i < len(s). The
sequence g has length len(s) + 1 if len(s) is finite, and length w otherwise.

A (regular) automaton A is a tuple (I, Q, 6, I, F), where &, Q, 6, and I form a transition table, and
F C Q is a set of final states. A string s is accepted by A if and only if len(s) is finite and there is a run
q of A for s where Uen(s) isin F, i.e. it has a run whose last state is a final state of A. The language
accepted by A is denoted L(A).

A Buchi automaton A is a tuple (£,Q,6,1, R), where I, @, 6, and I form a transition table, and
R C Q is a set of Biichi recurrence states. An accepting run of A on the string s € =“ is a sequence ¢
such that g; is in R, for infinitely many j. The language accepted by .4, denoted £(.A), is the set of all
strings with accepting runs.

Any automaton A is deterministic if its underlying transition table is. The notation |A| is used for
the size of A, i.e. the number of states in A.

A language L of finite strings is regular if there is some regular automaton A such that £(.A) = L.
The class of languages accepted by regular automata is closed under union and intersection. A language
of infinite strings is called w-regular if and only if it is the language accepted by some Biichi automaton.
The class of w-regular languages is also closed under union and intersection. However, unlike in the
case of regular automata, the deterministic Biichi automata accept a strict subclass of the w-regular

languages. This subclass is closed under intersection, but not union.

3 Review of Supervisory Control Theory

3.1 Finite Traces
3.1.1 Supervisory Control Problem

Ramadge and Wonham’s theory of supervisory control [2, 18, 3] uses formal languages of linear traces,
or strings, to model both the plant and its specification. Each trace represents a sequence of events in a
possible execution. The event set T is partitioned into controllable events £, and uncontrollable events

Yy. Intuitively uncontrollable events are always enabled, while controllable events can be prevented




from occurring at any time.

The uncontrolled plant or generator is modeled as a language L of finite traces over ¥. The prefixes
of the language L represent all possible partial executions of the plant, while L itself is the set of
successfully completed traces.

A supervisor controls the plant’s executions by observing the events of the plant and disabling
possible events from occurring next. Formally, a control mask v is any subset of ¥ that contains X,.
Applying the mask v means that every event in 7 is enabled. Let T’ denote the set of all control masks.
Given a plant L, a supervisor f is a function f:pr(L) —T.

The plant’s supervised prefiz language Lo, is given as
i) A € Ly,
il) w.o € Ly if w € Lo, 0 € f(w) and w.o € pr(L).

Its supervised language is Ly = Lo N L, i.e. the strings of the plant that survive under supervision. If
Lo = pr(Ly), then f is a non-blocking supervisor for the plant L. Intuitively f is non-blocking if any
partial execution allowed by f can be extended to a completed execution. The standard problem to be

solved is given as the supervisory control problem.

Problem 3.1 — Supervisory Control Problem for Finite Traces
Given a plant L, find a nonblocking supervisor f such that Ly C E, where E C L is the specification

language for the closed-loop behavior.!

3.1.2 Problem Solution

Ramadge and Wonham [2] introduced the notion of controllability to help characterize the supervised

sublanguages of the plant. A language K € L is controllable with respect to L and X, iff
pr(K).Zy Npr(L) C pr(K).

It was shown ([2], Proposition 5.1 and Theorem 6.1) that there is a supervisor for the language K if
and only if K is L-closed and K is controllable wrt. L and Z,,.

Let E be a subset of =*. Let C*[L, £,](E) be the class of controllable sublanguages of E, F*[L](E)
the class of L-closed sublanguages of E and CF*[L,E,J(E) = C*[L, Z,J(E)NF*[L](E) their intersection.

The supervisory control problem has a solution iff this class contains a non-trivial language.

Theorem 3.1 ([2]) The class CF*[L,L,)(E) is non-empty and closed under union and has a supremal
element, denoted sup CF"[L,L,](E). m]

Thus the control problem has a solution if and only if sup CF*[L, £,](E) is not the empty language
([2], Theorem 7.1). This supremal language

sup CF*[L,Z,)(E) = U{T :T C E,T is controllable wrt. L, X, and T is L-closed}

1In this paper we do not consider a minimally required behavior, but only a maximally tolerable behavior.




corresponds to the least restrictive supervisor and can be expressed as the greatest fixpoint of a fixpoint
operator derived from the above [18]. Suppose the plant and specification languages L and E are
regular languages, accepted by the deterministic finite-state automata Ay and Ag respectively. Then

solving the supervisory control problem reduces to computing sup CF*[L, £,])(E), and has complexity

O(JAe|*.|Ap[?).

3.2 Infinite Traces

3.2.1 Supervisory Control Problem

The model was first extended by Ramadge to infinite traces in [14]. Subsequently, Thistle [16] redefined
controllability for infinite strings and considerably extended Ramadge’s initial results. In particular,

Thistle focuses on computational, algorithmic issues.

Problem 3.2 — Supervisory Control Problem for Infinite Traces
For a given plant S, find a nonblocking supervisor f such that Sy C A, where A C S is the specification

language for the closed-loop behavior.

3.2.2 Problem Solution

It was shown ([14]) that there is a supervisor f for B C S if and only if pr(B) is controllable wrt. pr(S)
and B is closed relative to S.

Let C¥[S, £u](A) denote the class of sublanguages B of A such that pr(B) is controllable wrt. pr(S)
and Z,. Let 7“[S](A) be the class of sublanguages of A closed relative to the plant S. The intersection
of the two classes is denoted CF“[S, £,](A). Thus the supervisory control problem has a solution if and
only if this class contains a non-empty language. Let UCF“[S, L,,](A) denote the language obtained by
taking arbitrary unions of the languages of CF“[S, £,](A).

Thistle states the following theorem.

Theorem 3.2 ([16], Theorem 5.9) The supervisory control problem for infinite traces with plant S
and specification A has a solution if and only if UCF[S, T,](A) # @. o

He then proceeds to show how UCF“[S, £,](A) can be constructed using various fixpoint operators
when A is given as a form of automaton over infinite strings. From UCF¥[S, £,](A) a language that
is both [S, y]-controllable and S-closed can be derived. This language allows the construction of
a supervisor that solves the supervisory control problem for infinite traces. Applying the results of

Thistle to the class of Biichi automata gives the following.

Theorem 3.3 ([16], Theorem 8.17) The supervisory control problem for infinite traces with plant S
and specification A, given by deterministic Buchi automata As and A, respectively, can be solved with
complezity O(|As|3.|Aal?). o

However the class CF“[S, £,](A) is not closed under arbitrary unions, and so UCF“[S, ,](A) may

not itself correspond to a supervised language. Under certain circumstances, however, the problem




admits a simpler solution. Ramadge proves that although the class CF“[S, X,](A) is still not closed

under union when A is closed relative to S, its supremal element does lie in the class.

Theorem 3.4 ([14]) For any language A C S closed relative to S, the class CF“[S,Ly)(A) has a
supremal element, denoted sup CF“[S, T,](A). Moreover sup CF*[S, Ey)(A) = UCF¥[S, Z,](A). m

Thus given a specification A that is closed relative to the plant S, the supervisory control problem
has a solution if and only if sup CF¥[S, £,](A) is non-empty. Ramadge did not give an explicit cor-
respondence between the infinite trace supervisory control problem and a finite trace counterpart. In
Appendix B, we show how the infinite trace problem can be reduced to a finite trace problem when A

is closed relative to the plant S.

Theorem 3.5 (Theorem B.2 of Appendix B) The supervisory control problem for infinite traces
described above can be solved with complezity O(|As|?.|Aal?), if the specification A is closed relative to
the plant language S. ]

While the work of Thistle is more general, we consider the special class of problems where the
specification is closed relative to the plant to be of importance. For example, it includes all instances

of closed specifications, i.e. pr(A4)® = A.

4 Timed Traces

Our model of a timed discrete-event process is a set of timed traces. We use the nonnegative reals IR,
as our domain of time. Timed traces show the sequence of events the process executes together with
the exact times at which they occur. The traces evolve over ¥ U {€}, where € is not a real event, but
corresponds to nothing happening.

As in the untimed case, we distinguish between finite timed traces and infinite timed traces. Finite
timed traces record the events that have occurred over a finite length of time. Infinite traces indicate

events that occur over an unbounded time period, and are used to model non-terminating processes.

4.1 Finite Timed Traces

Let T = {@} U {[0,7] | t € R4} be the union of the empty interval as well as the set of all closed
finite time intervals which start at 0. A finite timed trace is any total function v:I, — L U {¢} with
I, € T which satisfies the following finiteness property: the set {t € I, | »(t) € I} is finite. This
condition asserts that there cannot be an infinite number of real events (i.e. from L) in any finite time
interval. The reason for enforcing this condition is that we want to model discrete processes which have
some unknown upper bound on the frequency of events. This property is implied by the notions of
non-Zenoness, bounded variability and bounded conirol found in [19]. Let ¢, denote the largest time in
I,. A timed trace v records all events that have occurred up to time ¢,. Notice also that two events
are not allowed to occur simultaneously. The symbol A is used to denote the empty timed trace with

domain I = Q.




A finite trace p is a prefiz of v if I, C I, and p(t) = v(t) for all t in I,. A timed language L is any
set of timed traces. Its set of prefixes is denoted pr(L).
If the event o € £ U {¢} occurs at time ¢ we denote this by the pair {o,t). The concatenation of
a trace v with (0,t), denoted v’ = v.(0,t), is only defined when ¢ > ¢,. In this case, I,» = [0,t] and
v': I,y — £ U {e} is given by:
v(t) ift' el,,
VithY={ ¢ ift' =t
€ otherwise.

A trace v can equivalently be represented as a finite sequence in (S U {e} x Ry)"
v= (0’0,t0), (Ul,tl), ceey (Ug,t,'), ey (a’,,,t,,).

For 0 <i < n,t; <t;;1 and a pair {0;,t;) appears in the sequence if and only if the event o; = v(t;) and
0; € X. The last pair of the sequence always appears as (on,tn) = (¥(t,),t,). Note that the sequence
lists all real events from ¥ in the order of their occurrence. The sequence is terminated by either a real
event or (¢,%,), depending on whether »(t,) maps to a real event or ¢. The reason for recording this

last event-pair in the sequence is to indicate the length of the time domain I,.

4.2 Infinite Timed Traces

An infinite timed trace is modeled as a total function v: IRy — ZU{e}, satisfying the finiteness property:
for every I € Z, the set {t € I | v(t) € T} is finite. Notice that an infinite timed trace may include
either finitely many or infinitely many events from £. A timed language S of infinite traces is any set
of infinite timed traces.

Because of the finiteness property, an infinite timed trace may include only a countable number of

real events (i.e. from ¥). Thus it may also be represented by a sequence from EU{e} xRy)™®, ie.,
v= (0’0,t0), (Ul,tl), ceny (O’i,i,'), -

where the pair (0;,1;) appears in the sequence if v(t;) = o; # €. Furthermore t; < ti+1 for i > 0. The
time domain of any infinite timed trace is clearly IR, and so we need not, and indeed cannot, follow the
case of finite traces by recording the “last” event. Observe that this sequence may be finite, in which
case a finite number of events from ¥ occur, followed thereafter by nothing happening.

A finite trace p is a prefiz of v if u(t) = v(t) for allt € I,,. The set of prefixes of a language of infinite
traces S is denoted pr(S) and is a set of finite timed traces. The limit of a set of finite timed traces L
is denoted L™ and is defined to be the set of all infinite timed traces with infinitely many prefixes in
L. Notice that L™ is not the same language as that obtained by taking the untimed limit of sequences

representing the traces in L.2

2This is because L™ may include infinite traces with only finitely many events in X.




5 Supervisory Control for Finite Timed Traces

Most of the standard results from supervisory control theory also hold for timed discrete event systems

modeled by languages of timed traces.

5.1 Supervisory Control Problem

The uncontrolled plant or generator is modeled as a language of finite timed traces. For simplicity it
will also be assumed that the partial executions of the plant are precisely the prefixes of L.

As in the untimed case, the event set ¥ is partitioned into controllable events X, and uncontrollable
events T, and a control mask v is any subset of T such that 3, C v. Applying the mask v at time ¢
means that every event in 7 is enabled at time t. The plant can freely choose to execute any event in
+. Let T' denote the set of all control masks 7.

Given a plant L of finite timed traces, a (timed) supervisor f for L is a partial function
f:pr(L) xRy —T.

The supervisor function f(v,t) is only defined over ]¢,,00), where %, is the time of v’s last event.

The language Lo of prefixes generated by L under f’s supervision is given by:
i) A € Lo;
ii) v.{0,1) € Lo if v € Lo, 0 € f(v,t) U {e} and v.{0,t) € pr(L).
Observe that the supervisor cannot prevent the passing of time (as represented by the € event), and
thus cannot directly force any event to occur. It may only enable or disable events. The supervised
language of the closed-loop system is Ly = Lo N L. Intuitively, Ly is the sublanguage of L that survives

under supervision. The supervisor f is nonblocking if pr(Ls) = Lo.

The timed version of the supervisory control problem is stated as follows.

Problem 5.1 — Supervisory Control Problem for Finite Timed Traces ;
Given a plant L, find a nonblocking supervisor f such that the closed-loop behavior satisfies Ly C E,
where E C L is the specification for the closed-loop behavior.

5.2 Problem Solution

We extend the notions of controllability and supremal controllable sublanguage of a given specification

language [2, 18, 14] to timed languages.
Definition 5.1 Let K and L be languages of timed traces over T such that K C L. K is controllable
with respect to L and T, if

pr(K).(Zy U {e} x Ry) Npr(L) C pr(K).

Following the procedure in [2], we first establish necessary and sufficient conditions for supervisor
existence. Algorithms to perform the actual synthesis are dependent on the representation of the timed

languages, and are delayed to a later section.




Theorem 5.1 Let K and L be languages of finite timed traces over ¥ such that K C L. There is a
non-blocking supervisor f such that Ly = K if and only if

i) K is controllable wrt. L,
i) K is L-closed.

Proof:
(only if) Let f be a non-blocking supervisor such that L; = K.
Since f is non-blocking, i.e. pr(Ls) = Lo, it follows that

pr(Ly)NL=LoNL=L;

which establishes that K is L-closed.
Foroce T, U{e},anyt € Ry

v € pr(Ly), v.{o,t) € pr(L)
= v o,t) € Lo (supervisor definition)

= wv.(o,t)€ pr(Ly) (f is non-blocking)

and thus K is controllable wrt. L.
(if) Suppose that K is controllable wrt. L and that K is L-closed. We show by construction that
there is a supervisor for K. Let f be defined as follows. For v € pr(L),

ocET,
o€ fy,t) & or
o € X, and v.{o,t) € pr(K)

As K is controllable wrt. pr(L), the language of prefixes generated by the plant under f’s supervision
is Ly = pr(K). The supervised language is Ly = Lo N L = pr(K) N L and by L-closedness of K this
implies that Ly = K. The supervisor is non-blocking. 0o

Let C**[L, T4](K) be the class of all controllable sublanguages of K, i.e.
C*[L,Zy)(K) = {T € K | T is controllable wrt. L}.
Analogously, let F9*[L}(K) be the class of all L-closed sublanguages of K, i.e.
FU*L)(K) = {T C K | T is L-closed}.

The class of languages which are both controllable wrt. pr(L) and L-closed is CF**[L,Z,}(K) =
CH*[L, T (K) N FH*[L)(K).

Theorem 5.2 Let K C L.
i) Ct*[L,Z,)(K) is non-empty and closed under union.

i) Fo*[L](K) is non-empty and closed under union.
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| iii) There is a supremal controllable (wrt. pr(L) and T, ) and L-closed sublanguage of K. It is denoted
| sup CF**[L, Z,)(K).

Proof:

i) Let @ be the empty language. Clearly @ € C"*(K), so C*(K) is non-empty. Let K; and K3 be
two controllable languages in C**(K). It follows from the definition of prefix-closure that

pr(K1 U K3) = pr(K1) U pr(K2).

1t follows that

pr(KiUK2)(Zu U{e} x Ry)NL = [pr(K1) U pr(K2)l(Zu U {e} X Ry)NL

[pr(K1)(Zu U {e} x Ry) U pr(K3)(Tu U {e} x Ry)]NL
[pr(K1)(Zy U {e} x Ry)NL]U [pr(K2)(Zy U {e} x Ry) N L]
pr(K1) U pr(K2) = pr(K1 U K3)

Il

N

and so K; U K3 € C**(K). Clearly this also holds for arbitrary unions.

ii) Again it follows from the definition of prefix-closure that

pr(K1UK))NL = [pr(K1)Upr(K2)]NL
[pr(K1) N L) U [pr(Kz) N L)
= KiUK,

This establishes L-closedness of K; U K. Clearly it also holds for arbitrary unions.

iii) Follows directly from (i) and (ii).

Theorem 5.3 The finite timed trace supervisory control problem for the plant L and the specification

language E has a non-trivial solution if and only if
sup CF**[L, S)(E) # 0.

Proof: This follows directly from Theorems 5.1 and 5.2. ]

6 Supervisory Control for Infinite Timed Traces

6.1 Supervisory Control Problem

The plant is modeled by a language of infinite timed traces S. It is assumed that all finite executions of
the plant are prefixes of S. The definition of a supervisor f for S is the same as for finite timed traces,
i.e. a function f : pr(S) x Ry — I'. As before f is defined only for finite strings, and the set of prefixes
generated by the plant under f’s supervision is denoted Lo. The supervised language Sy is defined as
pr(Lo)® N S. The supervisor f is nonblocking for S if pr(Sy) = Lo.

11




Problem 6.1 — Supervisory Control Problem for Infinite Timed Traces
Given a plant S, find a non-blocking supervisor f such that the closed-loop behavior satisfies Sy C A,
where A C S is the specification language for the closed-loop behavior.

6.2 Problem Solution

The following theorems are the timed counterparts of Propositions 3.1 and 3.2 given by Ramadge [14].
Theorem 6.1 establishes necessary and sufficient conditions for supervisor existence. The proof is de-

ferred to Appendix A. It is very similar to that given in [14].

Theorem 6.1 If B C S is nonempty, then there is a nonblocking supervisor f for S such that Sy = B
if and only if

i) pr(B) is controllable wrt. pr(S),
it) B is closed relative to S.

Proof: See Appendix A. m]

Let C**[S, £,](A) denote the class of sublanguages of A such that their prefix-sets are controllable
wrt. pr(S) and I, i.e.

C'*[S,Zu4)(A) = {T C A | pr(T) is controllable wrt. pr(S) and Z,}.
Let F'“[S](A) be the class of sublanguages of A that are closed relative to S, i.e.
Ft[S)(A) = {T C A | T is closed relative to S}.

Let CF[S, Z,)(4) = C**[S, By](A) N F+<[S](A) be the intersection of these two classes. Finally let
UCF**[S, £,](A) denote the union of all languages in the class CF*“[S, £,](A).

Theorem 6.2 The infinite timed trace supervisory control problem for the plant S and the specification

language A has a non-trivial solution if and only if
UCF*[S,Z.](A) # @

Proof: Immediate from Theorem 6.1. 0

Theorem 6.3 Let AC S.
i) The class Ct*[S, £,](A) is non-empty and closed under arbitrary union.
i1) The class F**[S](A) is non-empty and closed under finite union.

iti) If A is closed relative to S, then the class CF"“[S,£,](A) has a supremal element, denoted
sup CF'“[S, E,](A). Moreover, sup CF"“[S, £,](4) = UCF[S, T,](A).
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Proof: See Appendix A. u]

Note that the class F**[S, L,](4) is not closed under countable union in general. However, for the

special case, where A is closed relative to the plant S, the class CF*“[S, £,](A) has a supremal element.

Theorem 6.4 The infinite timed trace supervisory control problem for the plant S and the specification

language A, where A is closed relative to S has a non-trivial solution if and only if
sup CFY¥[S, Zu](A) # @
Proof: Follows directly from Theorems 6.1 and 6.3. u]

As in the case of untimed infinite traces, the supremal element may be characterized in terms of the
supremal element of a corresponding class of finite trace languages if A is closed relative to the plant S.

This is shown in Appendix B.

7 Timed Automata

7.1 Timed Regular Automata and Timed Biichi Automata

We use timed automata to represent the timed behaviors of the plant and its specification. These
automata are standard finite-state automata with real-time constraints on the delays between events
[8, 9, 12]. Each timed automaton has a set of clocks which may only be reset when transitions are made.
The value of each clock records the time that has passed since it was last reset. A transition can only
occur when the current values of the clocks satisfy its timing constraint. Thus the constraints express
conditions on the delays between events.

The underlying structure of any timed automaton is a timed transition table. A timed transition
table is a tuple 7 = (%, Q, go, C, §). It has a finite alphabet X and a finite set of states Q, of which ¢o
is the initlia.l state. The set C is a finite set of clocks, named z;, z3, ..., zx. The transition table 7
has a set of transitions § C Q x @ x T x 2€ x En, where En is the set of enabling conditions, namely
the boolean closure of the atomic conditions £ ~ ¢ where z is a clock, ¢ is a constant, and ~ is one of
{<, <,=,>,>}. Clocks are only ever compared to integer values. If, however, rational constants are
required it is straightforward to transform a language into an equivalent one with integer constants: all
time constants are multiplied by the least common multiple of the rational denominators. Note that
no addition or comparison between clock values is permitted. If (g1,92,0,7, E) is in § and the clocks
satisfy E, then A may move from state g; to state g2 on input o at the same time as resetting to zero
the clocks in . The clocks all have value 0 at the start of a run.

A time assignment is a function v : C — IR assigning a nonnegative real value to every clock.
Constants may be added to assignments, where (v+ ¢)(z;) = v(z;)+ ¢. [ = t]v is the time assignment
that assigns time ¢ to every clock in # C C but is otherwise the same as v. The time assignment 0,

maps every clock to 0. We use the symbol V to denote the set of time assignments.
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A run of T over the timed trace v = {09, %0), {01,%1), ... € (EU{e}) x R{)™ is a sequence of triples
p = (qo, vo, uo), {q1,v1,u1),... € (@ x V x IR} )™ that satisfies:

1) (length consistency): len(p) = len(o) +1,

il) (occurrence times): w41 =1t; for 0 < i < len(o),
ill) (initiality): po = (go,0y,0),
iv) for all i such that 0 < i < len(o), either

(a) (event occurs): there is a tuple (gi, gi+1, 04, T, E;) in 6 such that
1. v; + u;41 — u; satisfies E;, and
il. vig1 = [mi — 0)(vi + ui+1 — u;), or
(b) (time passes at end of v):
i. i=len(o) -1,
ii. 0; = ¢,
ill. ¢; = giy1, and
IV, Vig1 = v + uig1 — Y.
From the timed transition table, we construct two sorts of timed automata. A timed automaton is
a tuple A = (X,Q, q0,C, §, F), where I, @, go, C and § form a transition table as described above. The

set F' C @ defines the final accepting states. Depending on the acceptance condition, these are either

acceptors of finite traces, or acceptors of infinite traces.

Definition 7.1 A timed regular automaton (TRA) A is a timed automaton with the following accep-
tance condition: A accepts the timed trace v if v is finite, v(t,) # €, and v and has a finite run p of A

with its last state in F, i.e. Qlen(p)-1 € F.

Definition 7.2 A timed Biichi automaton (TBA) A is a timed automaton with the following acceptance
condition: A accepts v if len(v) is infinite and v has a run of A in which some state ¢ € F is repeated

infinitely often.

In either case, we use £(.A) to denote the language accepted by A. The language L(A) is a timed

language of finite or infinite traces that do not end in e.

Example 7.1 The TRA with two timers z and y in Figure 1 accepts all traces where requests are
repeatedly made within 5 seconds of each other. A request may be either refused or granted. However,
if it is not refused within 2 seconds, it will be granted within 3 seconds (of the time of the original
request). In addition at least 1 second must pass before the next request.
More precisely,
L(A) = {{o0,t0), {(01,t1),...| fori>0, o9 = request, ogi41 € {refuse, grant},
toipe <t +5, toipe > taig1 +1,
if 09;41 = refuse then t2;41 < ty; + 2
and ;41 > t2i—1+ 3, wheret_; =0
and if o241 = grant then 25,41 < t2; + 3}
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A timed transition table is deterministic if there is at most one run of the table for every timed
trace. It is complete if for every state and every event, there is at least one transition enabled at any
time. Note that if a timed transition table is both complete and deterministic then it has exactly one
run for every timed trace. A timed automaton is deterministic (complete) when its timed transition
table is.

Given a timed automaton A = (E,Q, q0,C, 6, F), we define its completion comp(A) to be the au-
tomaton (X, Q U {qdead}, 0, C, 8, F). It differs from A in that its states include the additional state
Qdead, and its transition function &' includes the additional transitions {(g, gdead, o, D, E)} where E is
the negation of all enabling conditions associated with transitions of A out of state ¢ on symbol ¢.

Notice that when A is deterministic, then so is comp(.A).

7.2 Concurrent Components

We now define the product of two automata. Let A; = (T, @i, gio, Ci, 6;, F;) for i = 1,2 be two timed
regular automata over the same alphabet X. We assume the clocks sets C; and C; are disjoint. Their
product A; XA, is the timed regular automaton 4 = (£, Q, g0, C, 8, F'). Its states are Q = Q1 x Q2, with
initial state gq is (g10, ¢20). Its clock set is C = C1UC>. The transitions of A are those transitions that are
enabled in both 4; and Aj, i.e. ({g1, ¢2), 7, (¢}, g5}, 7, E) € § if and only if there exist m; € 2€*, 7, € 2€7,
E; € 28" and E, € 253 such that (q1,4},0,71,E1) € 6, (¢2,95,0,72, E2) € 62, # = m; U mp, and
E = E; A E;. The final states are F' = Fy x F3.

Theorem 7.1

i) The class of languages accepted by timed regular automata are closed under intersection.

t1) The class of timed languages accepted by timed Bichi automata is closed under intersection.
Proof:

i) It is not hard to see that for two TRAs A; and A, L(A; x A2) = L(A;) N L(A3).

ii) This result is proven in [8].

The corresponding result for deterministic automata follows easily.

Corollary 7.1 The languages of timed deterministic (regular and Bichi) automata are closed under

intersection.

Proof: In the finite regular case this can be seen from the construction of the automaton in the proof

of Theorem 7.1. Analogous for Biichi automata. m]

As a consequence of this result, it is possible to construct global models of the plant by composing
automata for their components. In addition, a specification can be formed as the conjunction of two or

more separate conditions.
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8 Untiming Timed Automata

In this section we show how to convert a finite timed automaton into a finite untimed automaton,
retaining sufficient information for analyzing such properties as controllability and closedness. In the
next section we use this untiming construction to reduce the timed supervisory control problem to the
familiar untimed supervisory problem reviewed in Section 3.

The untiming described here is essentially the same as that of Alur and Dill [8] and Cerans [20]. The
untimed automaton mimics the timed automaton. Its states have two components: one to keep track
of the state of the timed automaton, and the other to record the equivalence class of the current clock
valuations.

We first describe how the clock valuations are partitioned into equivalence classes.

8.1 Partitioning Clock Valuations

To determine the possible futures of a timed execution, it is sufficient to know the current state of
the automaton’s transition table and the current clock values, without necessarily having to know the
exact times at which all previous events have occurred. This information is contained in the notion of
a timed-state. A timed-state is a pair (g,v) €Q x V.

A timed transition table could be transformed into an untimed transition table with a state for
every timed-state. It has transitions corresponding to events in the original timed automaton, and
special transitions denoting the passing of time. There is a very natural relationship between the runs
of this untimed automaton and the original timed automaton. However this automaton is not suitable
for solving an untimed supervisory control problem, because it clearly has uncountably many states
even though the original timed automaton is finite. The synthesis techniques described above require
languages represented by finite-state automata.

Fortunately, it is possible to aggregate the timed-states of any finite timed graph into a finite number
of equivalence classes without the loss of relevant information. In this subsection we describe this
partitioning [8]. Later we define an untiming mapping from timed traces to untimed traces and show
how to construct an automaton that accepts the untimed language of a timed automaton.

Each equivalence class of states must store enough information to decide which sequences of states
are possible futures. To decide which events are immediately enabled at a given state, it is sufficient to
know the integral parts of the clock values. The ordering of the fractional parts of each clock is needed
to determine which clock will next increment its integral value. Furthermore it is not necessary to keep
track of the exact value of clock = once it has exceeded ¢, the largest constant it is ever compared to:
every enabling condition on z can be decided given the information that its value is greater than ¢;.
This partitioning is now defined formally.

We assume that every clock appears in some enabling condition. For any r € IR4, let [r] denote the
integral part of r and fract(r) the fractional part, i.e. fract(r) = r—|r|. We first define the equivalence

relation 2 on valuations as v = ¢’ if and only if

i) Vz € C, if v(z) < ¢; or v'(z) < ¢, then |v(z)]| = [v'(2)]
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i) Vz,y € C, if v(z) < ¢, and v(y) < ¢y, then

(a) fract(v(z)) = fract(v(y)) iff fract(v'(z)) = fract(v'(y))
(b) fract(v(z)) < fract(v(y)) iff fract(v'(z)) < fract(v'(y))

Notice that if both v and v assign to each clock z a value greater c;, then they are equivalent under
= Furthermore we call this special equivalence class vs.

Clearly for a finite automaton A, the relation = has a finite number of equivalence classes, which
we call regions. Let reg 4(v) be the equivalence class of =4 containing v. We drop the subscripts if the
meaning is clear. Let Regs(A) denote the set of all of A’s regions.

The successor function succ maps every region to a unique region. The successor of vy is itself.
When reg, # vs, suce(reg,) = reg, where for all v € reg; there exists a ¢ € R such that v+1 € reg,
and for all 0 < t' < t,v+1t' € reg, Ureg,. Notice that every region has exactly one successor. The

descendant operator desc is the reflexive, transitive closure of the successor function.

8.2 TUntimed Traces

For each timed trace, we now define its untimed counterpart with respect to a timed automaton. The
time at which events occur is explicit in timed traces. Untimed traces have no times associated with
them. To capture this information with untimed traces, we introduce a new symbol 7 that denotes
the “significant” passing of time. Intuitively, a significant amount of time has passed when the clock
valuations shift from one region to the next. By counting the number of regions passed we can determine
which region the clock valuation currently lies in.

We now formally define the correspondence between timed traces and untimed traces. The untiming
depends on the transition structure of the automaton. For simplicity we work only with deterministic
timed automata, but the definitions and results generalize naturally for non-deterministic automata.

Let v; and v2 be valuations such that v, = v; + ¢ for some ¢t > 0. Then the region reg, = reg(vs)
is a descendant of reg, = reg(vi). We define a partial function representing the number of regions
between reg, and reg,, where reg, is a descendant of reg,, i.e. reg, € desc(reg,). If reg; = reg,, then
nr(v1, v2) = 0. Otherwise nr(vy, v2) is defined to be the number one more than the number of successive
regions between, and not including, reg, and reg,.

Let v be a finite timed trace with a run on a deterministic TRA .A. Because A is deterministic it
has a unique run p for v. The untimed trace untime(v) is a sequence over the augmented alphabet
T U {7} obtained by inserting a number of 7 events between the non-¢ events of 0.3 Each 7 denotes the
passing of time causing clock valuations to move from one equivalence class to the next. To be precise,
the sequence contains all non-¢ events of v in their order of occurrence. There are nr(0,,v;) 7 events
added as a prefix before op. In addition, there are nr(v;,v; + (uiy1 — u;)) events labeled 7 inserted
between ¢; and oi41 for 0 < i < len(o). If the final event of v is ¢, i.e. Olen(o)-1 = & then untime(v)

may end in a sequence of T events.

3This untime operator is not the same as that found in [8, 12). Our operator is necessarily more complex in order to

enable a timed language to be reconstructed after it has been untimed.
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We now also define its inverse, a timing operation. Given a finite untimed sequence w € (X U {7})*,
we define time 4(w) to be the set of all traces v for which untimes(v) = w.

Notice that both the untime4 and time4 operators depend critically on the transition table of A.
If no confusion arises, we shall omit the subscript. The time and uniime operators are extended in
a straightforward way to languages by their application to each element of the language. Also the

operators are easily defined for infinite strings and TBA’s.

Example 8.1 Consider the timed trace v = (request, 1.1), (refuse, 2.0), (request, 3.5), (grant,4.2). 1t is
accepted by the automaton of Figure 1. See Figure 2 for an illustration of how untime(v) is derived. Its
clock valuations immediately before and after each event are {z = 1.1,y = 1.1} and {z = 0.0,y = 1.1}
for (request,1.1), {z = 0.9,y = 2.0} and {z = 0.9,y = 0.0} for (refuse,2.0), {z = 2.4,y = 1.5} and
{z = 0.0,y = 1.5} for (request,3.5), and {z = 0.7,y = 2.2} and {z = 0.7,y = 0.0} for (grant, 4.2).
The trace untime 5 (v) is 7, 7, 7, request, 7, 7, refuse, 7, 7, 7,7, T, T, T, request, 7, 7, 7, grant. For instance the
first 3 T events correspond to moving between the equivalence classes for the valuations {z = 0.0,y =
0.0},{z=0.1,y=0.1},{z=1.0,y = 1.0}, and {z = 1.1,y = 1.1}. o

8.3 Properties of Timed and Untimed Traces

In this section we use V! and W to denote timed languages of finite or infinite traces, and V¥’ and
W4t to denote untimed languages of finite or infinite strings. We show a number of basic properties of

the untime and time operators.

Proposition 8.1 Let w be an untimed trace from (Z U {r})*. If the timed automaton A accepts any

timed trace in time4(w) then A accepts every timed trace in times(w).

Proof: Suppose A accepts the timed trace v, and that untime(v) = w. As usual, let p be an accepting
run for v, where p; = (gi, vi,u;). Assume that v/ is also in time4(w). We will construct an accepting
run p’ of A for /. The state component of p’ will be the same as for p.

The construction proceeds in steps for every element of o. Initially we set po = p;. By the definition
for a run of A, at time u;, the valuation vo+(u1 —uo) satisfies E for some transition (go, g1, 00, 7, E) € §,
where 6 is the next state relation of A. After resetting the clocks in =, the resulting valuation is v;.
Consider the regions passed as time progresses from ug to u;. Because up = up = 0, untimex(v) =
untime 4(v'), and the successor region of any region is unique, the same regions are passed through by
A’s run of /. Thus there is some time u} such that vj + (u} — up) = vo + (u1 — uo). At this time the
same transition is enabled, and the resulting clock region will be the same, i.e. v] = v;. The rest of the

construction continues as for this first event of o, yielding an accepting run of v’ o
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For further reference, we present the following propositions.

Proposition 8.2 Let V¥, V}, V4, and W* be languages of timed traces. Let the untime and time oper-
ators be defined in terms of a timed automaton A for W*, ie. L(A) = W*. Let V¥' V¥, and V' be

non-timed languages.
i) V' C time(untime(V'*))
i1) W' = time(untime(W?))
iii) pr(W') = time(untime(pr(W*)))
iv) V¥ = untime(time(V**))
v) V¢ C V4 = untime(V{) C untime(V5)
vi) V! C W' & untime(V?) C untime(W?)
vii) V¥ C V¥ & time(V) C time(V;2).

Proof: Parts (i), (iv), (v), and (vii) follow immediately from the definition of time as a one-to-many
mapping and of untime as a many-to-one mapping. Parts (ii), (iii), and (vi) rely on Proposition 8.1 as
well. ju

Proposition 8.3 Let V!, V}, V4, and W' be languages of timed traces. Let the untime and time oper-
ators be defined in terms of a timed automaton A for W*, i.e. L(A) = W'. Let V¥, V¥, and V! be

non-timed languages. .
i) untime(V}) N untime(V7}) D untime(V} N V5)
#1) untime(V*) N untime(W*) = untime(V* N W)
#i) untime(V*) N untime(pr(W?*)) = untime(V* N pr(W?*))
iv) time(V¥?) N time(V3*?) = time(V* N V3*)
v) untime(V}) U untime(V}) = untime(Vy U V)
vi) time(V¥') U time(V3') = time(V#* U V3**)

Proof: Parts (i), (iv), (v), and (vi) follow from the definition of untime as a many-to-one function.
For part (ii) it remains to be shown that untime(V?) N untime(W*) C untime(V* N W*). Suppose w €
untime(V*) N untime(W?). Then there exists a v € V* such that uatime(v) = w. By Proposition 8.1, A
accepts every trace in time(w), and therefore accepts v. As A accepts W*, we conclude that v € vinw?,

and so the result follows. The proof of part (iii) is similar. a
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Proposition 8.4 Let V' be a timed language over =. Let V*! be a non-timed language over £ U {r}.
Then

i) pr(time(V¥?)) = time(pr(V*!))
i) pr(untime(V?*)) = untime(pr(V?*))
Proof:

i) Without loss of generality, we suppose that K“! consists of the singleton string w. We show

inclusion in both directions.

Let p be in pr(time(w)). Then there exists v € time(w) such that p is a prefix of v. Applying
the untime function to both timed strings implies that untime(u) is a prefix of untime(v), which

is w. Hence p is in time(pr(w)).

Now suppose p is in time(pr(w)). Then there is a string v such that v is a prefix of w, and p is
in time(v). Since every timed string in time(v) can be extended to a timed string in time(v.v’),
with v’ an untimed sequence, there is a timed string v in time(w) of which 4 is a prefix. So u is

in pr(time(w)).

ii) Analogous to (i).

8.4 Untimed Automata

Let A be a finite-state timed automaton. We now define the untimed finite-state automaton Untime(A) =
(Zut, Qut, 84, I¥t) F¥) with alphabet %t = T U {7}, states Q¥* = Q x Regs(A), and final states F¥! =
F x Regs(A). The initial states are I** = I x Regs(0,). The transition relation §** C Q%' x T x Q!

is given by

i) (event occurs): ({(g,reg(v)),o,(q',reg(v’))) € 6% for ¢ € T if there exists a tuple (¢,¢',0, 7, E) € 6
such that v satisfies E and v/ = [r — O}v.

ii) (time passes): ({g,reg(v)),,{g,reg(v'))) € 8%* if succ(reg(v)) = reg(v’).
Lemma 8.1
i) The automaton Untime(A) is deterministic and accepts the language untime (L(A)).
i) time,4(L(Untime(A))) = L(A).
Proof: Immediate from the construction and Proposition 8.1. m]

The following lemma states the complexity of the untiming operation in a slightly different form
“from [8].

20




Lemma 8.2 The automaton Untime(A) has O(|Q|-2V E+1+18 N states and O([|Q|+]6]]-2N 1t+1+10gN])
edges, where £ is the number of bits needed to encode the largest integer constant in the transitions’ timing
constraints. Furthermore it can be constructed in time O([|Q[+N -|8[)-2N U+1+H o8N N . [log N + £ + 2]).

Proof: The states of Untime(.A) are pairings of states of A with regions of A. The number of regions
is the number of equivalence classes of A’s clock evaluations, which is bounded by (II;=;..n(cz; + 2)) -
(2N - NY). Recall that ¢, stands for the largest constant that clock i is compared to. This expression
represents the product of the number of integer values for the clocks multiplied by the number of
orderings of the fractional parts of the clocks, and is O(2V'¢+1+196 ¥]) Hence the number of states is
o(Q|- gN'[t+1+losN]),

The untimed automaton’s next-state relation has exactly one edge labeled r for every state in
Untime(A). For every edge out of ¢ in A, there is at most one edge in Untime(A) out of (g, a) for any
region o. Hence the number of edges is O([|Q| + |6]] - 2V [¢+1 4108 M),

First notice that each region can be represented by a bit vector. The representation consists of
the integer clock values and the ordering of the fractional parts of the N clocks. Its size is bounded
by O(N -flog N + £+ 2]). Computing the r-successor of each region can be done in time linear
in the size of the representation of the region. Thus computing all T-successors takes time
O(|Q] - 2N lt+1+lg Nl . N . [log N + £+ 2]). Testing whether a transition in A should be enabled in
the untimed automaton state (s,a) and computing the correct successor state after resetting the
clocks is an O(N - N -[log N + £+ 2]) operation. Thus all non-7 edges can be computed in time
O(|6] - 2N [t+1Hog NI N . N . [log N + £+ 2]). a

The same techniques can be used to construct an untimed automaton accepting the untimed language
of a TBA. The construction is more complicated because it must also take into account the finiteness

condition.

Lemma 8.3 Given a deterministic timed Bichi automaton A, a deterministic untimed Buch: automa-
ton accepting untime(L(A)) can be constructed. Hs size is O(|Q||N|- 2N lt+1+og N]),

Proof: The proof is along the lines of the one given in [8]. Recall that an infinite run of the TBA A
is accepting if it passes through infinitely many final states of .4, and time progresses. Consider the
automaton U resulting from the same untiming construction as for timed regular automata. Unfortu-
nately when it is interpreted as a Biichi automaton, the language accepted is not untime(L(B)). While
it does accepts every string in untime(L(B)), it also accepts some infinite untimed traces that do not
correspond to infinite timed traces accepted by B: namely runs for executions with infinitely many
events in a finite time interval, where time does not progress. We must therefore restrict & to runs that
do reflect the progress of time, by enforcing an additional acceptance constraint.

Consider a run of A for a timed trace v for which time progresses without bound. Every clock is
either reset infinitely often or allowed to advance indefinitely. Therefore U’s run for untime4(v) must
satisfy one of two conditions for every clock i. Either there are infinitely many transitions corresponding
to clock #’s being reset, or the run reflects clock i being unbounded in the tail of its run. This latter

condition is the same as having .A’s run eventually remain among states whose clock valuation component
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indicates the clock has passed its maximal reference value. In other words, clock ¢ eventually always has
a value greater than c;, the largest integer to which clock ¢ is ever compared. While these conditions
are not Biichi conditions on the untimed automaton U, it is not difficult to transform ¥ into a Biichi
automaton that only accepts runs satisfying these conditions. The size of the automaton is multiplied

by the number of clocks. (m]

9 Supervisor Synthesis

The supervisor synthesis problem consists of constructing a non-blocking supervisor such that the closed-
loop behavior is contained in a given specification language. When a plant and its specification are given
as untimed deterministic finite-state automata, the supervisor synthesis problem s polynomially solvable
[3]. In this section we show that when real-time is introduced into the supervisory control problem,
and the problem is represented by finite-state deterministic timed automata, the synthesis problem
remains decidable. The algorithm uses the untiming techniques of the previous section to reduce the
timed problem into the familiar untimed synthesis problem. The total complexity of the timed synthesis
algorithms is exponential, due to the exponential blow-up in the untiming operation.

For clarity, we shall superscript timed and untimed languages with “t” and “ut” in the remainder

of this section.

9.1 Languages of Finite Timed Traces
9.1.1 Synchronizing Plant and Specification Automata

In light of the previous section, it may be tempting to solve the synthesis problem for timed traces by
untiming the automata, and then applying the synthesis algorithm for untimed processes. However,
this reduction is unsound, since the timing information in the individual automata is independent, i.e.
a timed trace would have different untimed representations when untimed with respect to the plant
automaton and with respect to the specification automaton.

We must first synchronize the automata. Let A; and A, be deterministic timed automata. Con-
struct the timed automaton A} = comp(A;) x C; where C, is obtained by making all states of the
completion comp(.Az) final. Notice that A} has a run for every finite timed trace, and that A/ accepts
L(A,). Intuitively A} inherits the state-transition structure and clock-resetting properties of A without

changing its acceptance conditions. Let A’ be similarly defined.
Lemma 9.1 For every timed trace v, untimey (v) = untimeg; (v).

Proof: The automaton comp(A;) differs from C; only in its final states. Therefore by the construction of

1 and A) and the definition of the product of two automata, A} and A5 have identical alphabets, state
sets, initial states, clocks, and transition functions. They differ only in their final states. The definition
of untime4(v) is independent of the final states of A and therefore it follows that untimeq;(v) =

untime 41 (v). o
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Note also that when a timed automaton is untimed, the original final states of the timed automaton
affect only the final states of the untimed automaton, not the transition structure. Therefore, the
automata Untime(A]) and Untime(Aj}) share the same transition structure. They too differ only in
their final states. We consider the automaton Untime(Af.) to be synchronized with Untime(A%.) in

the sense that their transition tables are identical.

9.1.2 Reduction to Untimed Supervisory Control Problem

Suppose we are interested in the timed supervisory control problem, with timed plant language L, timed
specification language E?, and uncontrollable events . Let Ag: and Az« be TRA for the specification
and plant languages E* and L. Let their primed versions be obtained by synchronizing the automata as
described in the previous section. We show that it is sufficient to solve instead the untimed supervisory
control problem with the (untimed) plant language L*!, (untimed) specification language E¥t and
uncontrollable events L4 = Ty U {7}, where L"! = untimen’ (L!) and E¥* = untime AL, (E?). From
now on, we use the unsubscripted function untime to mean untime AL, and untime AL since they
represent the same function. The same is done for the time operator. Note that E* = time(untime(E*))
and L = time(untime(L")), because of Proposition 8.1.

Notice that in the untimed problem, the passing of time, as represented by the special newly-
introduced event T, is an uncontrollable event, i.e. the uncontrollable events for the untimed supervisor

problem is %' = ¥, U {r}.

Theorem 9.1 Let K* be a timed language over the alphabet T, and let K¥* be an untimed language
over the alphabet TU {7}.

i) If K" is [untime(L'),Zy U {r}]-controllable and untime(L')-closed then time(K"%t) is
[L?, By)-controllable and L}-closed.

ii) If K* is [L*, Zy]-controllable and L*-closed then untime(K*) is [untime(L*), £y U {7}]-controllable

and untime(L*)-closed.

Proof: See Appendix A. o

The following useful corollary relates the supremal controllable and closed sublanguages of the timed

and untimed problems.
Corollary 9.1 sup CF**[L?, £,)(E*) = time(sup CF ™ [untime(L*), Ty U {7}](untime(E*))).

Proof: We show containment in two directions. For notational convenience, let L¥* = untime(L*), and
let E¥t = untime(E").
LHS C RHS: |

Taking K to be EtT = sup CF**[L*,T,)(E*) in Theorem 9.1 implies the language untime(E*") is
[L¥, £, U {r}]-controllable and L**-closed. Furthermore it is contained in untime(E"®) by monotonicity
of the untime operator, and is therefore a subset of sup CF*[L**, T, U {T}](E**). It follows that ET =
time(untime(E"T)) C time(sup CF*[L*, Ty U {T}](E™*)), as required.
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RHS C LHS:

Taking K** to be (E**)T = sup CF*[L*!, £, U {r}](E*!) in Theorem 9.1 implies time((E¥*)T) is
[L!,Zy]-controllable and Li-closed. Clearly (E®)! C untime(E!). As the two automata Ag: and
Ap:+ are synchronized and because of Proposition 8.1, time(untime(E*)) = E*. It follows then that
time((E¥")T) C E', and is therefore a subset of sup CF"*[L*, £,)(E?). o

9.1.3 Synthesis Procedure

From the previous subsection it follows that the timed supervisor for time(sup CF*[L¥*, TU(EYY)), as
constructed in Theorem 6.1 is the least restrictive controller for the timed supervisory control prob-
lem. This result suggests the following procedure for finding the least restrictive controller in a timed
supervisory control problem: firstly, synchronize the timed automata for the plant and its specifica-
tion; secondly untime them; thirdly, solve the untimed supervisory control problem; fourthly, time the
supremal solution; finally extract a supervisor. This is shown in Figure 3.

However, given a controllable and closed language K¥*, it is not necessary to first time K** in
order to extract a timed supervisor for time(K"*). Instead it is possible to construct the desired timed

supervisor f directly from an untimed supervisor f%* for K%t as follows:

o€ fy,t)iffo € f"‘(untich:u (v.{e, 1))). (1)

During a timed execution the supervisor f monitors time and simulates the actions of automaton
Afp:. At any given time it can determine the state of A}« and the current clock valuation. Hence it can
also determine the untimed trace corresponding to the timed execution seen so far. The supervisor f

allows an action if and only if f** allows the action for this untimed trace.

Lemma 9.2 The timed supervisor f derived as above Jrom the untimed supervisor f*t for K%' yields

the supervised timed language time(K%*).

Proof: Let L} be the language resulting from f’s supervision of the plant L!. We need to prove that
L} = time(K"'). As untime(v(e,t)).0 € pr(K**) if and only if v{o,t) € pr(time(K*?)), it follows that
the prefixes Lj resulting from f’s supervision of L* are time(pr(K “*))- L} is by definition L} n L,
which is the same as time(pr(K“*)) N L!. Because of Propositions 8.3 and 8.4, this in turn is equal to
time(K**) and the lemma follows. o

Theorem 9.2 Let the specification E' and the plant L be languages of finite timed traces such that
E' C L*'. Let Ag: and Ap: be delerministic timed regular automata such that E! = L(Ag:) and
L* = L(Ar+). The supervisory control problem is solvable in time polynomial in the sizes of Ag: and

Are and ezponential in the total number of clocks and the bit-length of their timing constants.

Proof: By Corollary 9.1 we may reduce the control problem over timed traces to that for untimed
traces. The automaton representations remain deterministic, and so the untimed problem can be solved

in the usual way. The solution yields a supervisor for the supremal controllable sublanguage, where
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the passing of time, as represented by the T event, is considered an uncontrollable event. The timed
supervisor is extracted directly from the untimed supervisor as shown above. The complexity follows

from the complexity of the untiming construction in Lemma 8.2. (m]

9.2 Languages of Infinite Timed Traces
9.2.1 Reduction to Untimed Supervisory Control Problem

Just as for finite timed traces, the supervisory control problem for infinite timed traces can be reduced
to the untimed problem.

We would like to show a correspondence between supervised timed languages and supervised untimed
languages, analogous to the finite trace case. Theorem 9.1 of the previous subsection gives a direct
relationship between individual supervised languages of finite traces, but only the equivalent of part (i)

is true in the infinite trace case.

Theorem 9.3 Let S = time(S¥*) and let B** C S*! be an untimed infinite language over the alphabet
T U {r}. If pr(B*) is [pr(untime(S*)), B, U {r}]-controllable and B** is closed wrt. untime(S*) then
pr(time(B¥*)) is [pr(S*), £y]-controllable and time(B%*) is closed wrt. S*.

Proof: See Appendix A. a]

Unfortunately it is not true that untiming an arbitrary supervised timed language gives a supervised

untimed language.

Example 9.1 Let S* be the language accepted by the TBA Ag: of Figure 4, where £, = {u} and
T, = {a,b}. Consider the language B* = {(u,t),(a,1+1),(a,2+1),...,{a,t' +1),(b,t' + 1 +1),(b,t' +
2+1),...]0<t < 1,# =[1/t]}. Its prefixes are controllable wrt. S*. Furthermore it is closed relative
to S* because every prefix v with ¢, > 1 is a prefix of a unique string v’ € B*. Thus there is a supervisor
f for B*: it observes the occurrence time ¢ of the uncontrollable event u, and then allows the correct
number of a events before continually allowing only b events.

Untiming B! gives the language untime(B') = B%* = {ru(rra)*(rrb)*}, and untime(S*) = S¥* =
B¥t U {ru(rra)*}. While pr(B%!) is controllable, it is not closed relative to S**, because ru(rra)’ €
pr(B)* is an adherent point of B%'. Thus untime(B*) is not a supervised sublanguage of untime(S*).
(w}

Instead we relate the union of supervised timed languages to the union of supervised untimed lan-

guages.

Theorem 9.4 Let S* be a plant language of infinite timed traces represented by the TBA Ag:. Let
Bt C St be a language of infinite timed traces. If pr(B?) is [pr(S*), Zy]-controllable and B! is closed
relative to S, then B = U,¢p: B, such that each untime(B,) is [untime(S*), £, U {7}]-controllable and
closed relative to untime(S*). In addition, pr(untime(B*)) is [untime(S*), Ey U {7}]-controllable and
untime(B*') = U, ¢ptuntime(B, ).

25




Proof: Throughout this proof, untime is used to represent the function untime 4 ¢+ The [untime(S*), T,U
{7}]-controllability of pr(untime(B')) can be derived as in the proof of Theorem 9.1.
Assume that B, has the following properties.

i) v € B,,
ii) B, C B,
iii) for all vy, v, € pr(By,), untime(vy) = untime(vs) = vy € pr(vz) or 3 € pr(vy),
iv) pr(untime(B,)) is [untime(S'), Ty U {r}]-controllable.
v) B, is closed relative to S*.

It is clear that B* = U,¢ptB, and untime(B') = U, ¢p:untime(B,). By assumption (condition (iv)),
pr(untime(B,)) is [untime(S*), £y, U{7}]-controllable. Let us show that untime(B,) is also untime(S?)-
closed.

Suppose an infinite untimed string w has infinitely many prefixes in untime(B, ). To prove untime(B, )
is closed relative to untime(S*), we must show that either w is in untime(B,) or not in untime(S?).
From each of these prefixes w;, chose a timed string pu; € pr(B,) such that untime(u;) = w;. Because
these timed strings are extensions of each other, their limit is an infinite trace y, where untime(u) = w.
Relative closure of B, with respect to S* implies that either y is not in S* or g isin B,. If p is in
B, then clearly w is in untime(B,). If p is not in S*, then untime(u) is not in untime(S*) because
§' = time(untime(S)). Thus the language untime(B,) is closed relative to untime(S?).

It remains to show that a language B, exists for each trace v € B*. To see that such a language
does indeed exnsts consider first B, o = {v}. Clearly it satisfies the first three conditions. Traces
from B can be added until condition (iv) is met without violating conditions (i)—(iii). Assume there
is w € pr(untime(B,,0)) such that w.(Z, U {r}) N untime(S*) ¢ pr(untime(B,0)). As B! is [St, Z,]-
controllable and accepted by the TBA As:, there is a trace v, € time[w.(Ey U {7}).(Z, U {r})¥] N B!
that can be added to B, o and that does not violate (iii). Indeed time(w) will be a prefix of v,,. This
can be done until pr(untime(B,¢)) is [untime(S*), Zy U {r}]-controllable, thereby meeting condition
(iv). As untime(B*) is [untime(S*), Z, U {7}]-controllable, the language B, ¢ will be contained in B,
thus meeting condition (ii). Now take B, to be pr(B, 0)® NB'. As B! is closed relative to S*, it follows
that B, is closed relative to S*. It is easy to see that B, meets all conditions (i)-(v) above. o

Corollary 9.2 Let S* be a plant language of infinite timed traces represented by the TBA Al and let

A? be a specification language of timed infinite traces.
i) untime(UCF**[S?, T,](A*)) = UCF*[untime(S*), T, U {r}](untime{A?))
ii) UCF*“[S*, £,])(A?) = time(UCF* [untime(S?), £y U {7}](untime(A*))

Proof: To enhance readability, we use timed-solns to denote CF>“[S?, £,])(A?), and untimed-solns to
denote CF“[untime(St, L, U{7}](untime(A?)). The union operator U applied to a class means the union

over the members of the class.
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i) LHS C RHS: untime(Utimed-solns) = Uuntime(timed-solns) C Uuntimed-solns, by Theorem 9.4.

RHS C LHS: time(Uuntimed-solns) = Utime(untimed-solns) C Utimed-solns, by Theorem 9.3.

ii) LHS C RHS: Apply the time operator to both sides of part (i), then observe that Utimed-solns C

time(untime(Utimed-solns)).

RHS C LHS: proven above.

Corollary 9.3 The infinite timed supervisory control problem for the plant S* and the specification A?
has a non-trivial solution (i.e. the class CF*“[S!, T,](A!) contains a non-empty language) if and only
if

UCF*[untime(S*), £, U {7}](untime(A*)) # @

Proof: Immediate from Corollary 9.2. o

9.2.2 Synthesis Procedure

The synthesis procedure that solves the infinite timed supervisory control problem is shown in Figure 5.
Firstly, synchronize the timed automata for the plant and its specification; secondly, untime them;
thirdly, compute the language that characterizes the solution of the untimed supervisory control problem
as in [16]; derive a solution to the untimed supervisory control problem; time the solution; finally extract
a supervisor.

Just as in the finite case however, a supervisor can be extracted directly.

Lemma 9.3 The timed supervisor f derived as in equation (1) from the untimed supervisor f** for B%

yields the supervised timed language time(B?).

Proof: Analogous to Lemma 9.2. o

The following theorem illustrates the feasibility of the synthesis procedure.

Theorem 9.5 Let the specification A* and the plant S? be languages of infinite timed traces such that
A' C S'. Let AY and A% be deterministic timed Biichi automata such that A* = L(AY) and St = L(AY).
The supervisory control problem is solvable in time polynomial in the sizes of Ay and A', and ezponential

in the total number of clocks and the bit-length of their timing constants.

Proof: Follows from Corollary 9.3, Lemma 9.3, Theorem 3.3 and Lemma 8.3. o
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9.3 Lower Bound on Complexity

We now show that we cannot expect to solve the timed supervisory problem more efficiently than
outlined above. The complexity of the problem is tied to the expressiveness of timed automata. Even

the task of analyzing whether a timed automaton accepts any timed trace at all is computationally
difficult.

Theorem 9.6 ([12], Theorem 3.39) Deciding emptiness of a timed Bichi automaton is PSPACE-
hard. o

From this result, we can prove the following lower bound on the complexity of timed supervisory

control.

Corollary 9.4 The timed supervisory control problem for both finite and infinite traces is PSPACE-
hard.

Proof: We first show that the problem of deciding emptiness of a timed regular automaton is PSPACE-
hard. We refer the reader to the proof of Theorem 3.39 in [12] for details, and merely indicate the idea
involved. We observe that only trivial modification need be made to Alur’s proof [12] that checking for
emptiness of a timed Biichi automaton is PSPACE-hard. The problem of deciding whether a linear-
bounded automaton (LBA) accepts a given input string is a well-known PSPACE-complete problem.
From an instance of this problem, Alur constructs a TBA that has a non-empty language iff the LBA
accepts its input. The proof could just as well construct a timed regular automaton, thereby reducing
the LBA problem to the emptiness problem for timed regular automata.

Since checking emptiness for deterministic timed regular automata is no simpler than for nonde-
terministic automata, the emptiness problem for the class of deterministic automata is also PSPACE-
complete.

We now show that the emptiness problem for deterministic timed regular automata reduces to the
timed supervisory control problem. Suppose we are given the deterministic TRA A over the alphabet .
Assume without loss of generality that no event is enabled at time 0. Consider the supervisory control
problem where the plant is represented by an automaton accepting the language (a,0).£(.A), where a
is a symbol not in ¥, and the specification language is {{(a,0}}. The event a is controllable, while all

events in I are uncontrollable. Then £(A) is empty iff there is a supervisor for this control problem. O

Thus it is extremely unlikely that there is an algorithm for the timed supervisory control problem
that is not exponential. Alur and Dill [8] note that the proof of PSPACE-hardness does not depend on
the choice of IR, as the time domain; the same result holds when using a discrete time domain. These
results suggest that further work needs to be done to discover strict subclasses of timed automata for

which the problem is polynomially solvable.
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10 Synthesis Examples

10.1 A Semiconductor Manufacturing Example

We now describe a synthesis example in some detail. The example uses a simplified timed model of a
part of a semiconductor wafer processing furnace. The specification requires that a semiconductor wafer
needs to be cleaned from spurious traces of oxide that inevitably contaminate the wafer in the ambient
environment. This cleaning is performed under a flow of hydrogen and at the right temperature. The
plant and specification model are given as languages of finite timed traces.

A timed automaton plant model for the process under consideration is shown in Figure 6. The
marking to denote initial and final states is conventional; go is the only initial state and the only
final state. For the plant to confirm that the wafer is clean, the wafer needs to be exposed to both
gas and the right temperature for at least one time unit. The gas line and the heating lamp can
be activated in either sequence. However, if the wafer is exposed longer than 4 time units to high
temperature but less than 5 units to hydrogen gas, it may deteriorate. The controllable events are
¥, = {sel_temperature, enter_gas, initialize}. The uncontrollable events are £y = {clean, deteriorate}.

The specification requires the wafer to be clean. Thereafter the plant can be initialized. A specifi-
cation model is shown in Figure 7.

Figure 8 illustrates the relevant time regions. The axes correspond to the two timers z; and z,.
Depending on the valuation of the timers, the deteriorate event can occur. The shaded area indicates
where this can happen. The synthesis procedure will make sure that only time regions where the
deteriorate event cannot occur are reached. As both timers advance at the same rate, the desirable
region is found to the right of the 45° line. The square at the lower bottom will not be reached due to
the time guard of the clean event.

Figure 9 shows the supremal [L, T,] -controllable and L-closed sublanguage of E.

10.2 A Non-Terminating Process Example

This example demonstrates the controller synthesis procedure for modeling languages of infinite timed
traces. The plant process S is given by the automaton Ag of Figure 10. It is a timed Biichi automaton
representing a resource allocator. Again, the marking to denote initial and final states is conventional;
go is the only initial state and the only final state. It continually responds to requests for access. If
a request is made too soon or too late after the last response, it may be refused. Otherwise it will be
granted within 5 seconds. The controllable event is £, = {request} and the uncontrollable events are
, = {grant, refuse}.

Its specification states that the resource is always being granted within 6 seconds of the time of the
last grant. There are to be no refusals. A TBA that expresses the precise specification is shown in
Figure 11. Notice that when synchronizing the automata, the values of the clock z in the specification
will coincide with those of the clock y in the process.

The language A = L(A,) is trivially closed relative to S, i.e. pr(4)®NS C 4, since the specification
is itself a closed language. We may therefore either apply the synthesis algorithm of Section 9.2.2 to
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derive a controller if any exists or the procedure described in Appendix B.2.2.

The full synthesis procedure yields the timed supervisor shown in Figure 12. The figure is a graphical
representation of the supervisor function f. Just like an automaton, the displayed graph is entered by
its initial state. For every state and valuation of the timer 2z a corresponding control mask 7 is displayed.

Part of the untiming construction is shown in Figure 13. Here each subfigure represents a collection
of regions. For instance, subfigure (i) represents all regions where y is equal to 0 and = has any value less
than 3. A transition from one subfigure to another represents a group of transitions from the regions
of the first subfigure to the regions of the second. There is a transition from every region in the first
subfigure to some region in the second, and for every region in the second subfigure there is a transition
from one of the regions in the first. A transition labeled 7* denotes a sequence of 7 events.

Under the least restrictive supervisor shown in Figure 12, the plant goes through the cycle represented
by the subfigures (i) to (vi). The request event is only enabled from subfigure (iv). If it is enabled any
earlier, a refusal is possible. For instance, a request from subfigure (ii) leads to subfigure (vii), where the
process is in state ga. The only possible response is now a refusal. After a request from subfigure (iii),
the process would be in state ¢; with its y clock between 1 and 2. But now the refuse event is enabled.

Thus the supervisor cannot allow the process to perform a request until y is at least 2.

11 Conclusion

The supervisory control problem over dense real-time can be solved by combining techniques developed
in [2, 14] and in [8, 9]. The complexity of finding controllers is polynomial in the number of automaton
states, and exponential in the length of its timing information. It is important to realize that this
exponential factor is not due to the use of the real numbers for time, since the problem is PSPACE-
hard even over a discrete domain. We are investigating how to make reasonable assumptions about the
system to avoid this computational blow-up.

We made some simplifying assumptions on the representations for timed languages. The timed
automata we defined accept only traces which do not end with nothing happening, i.e. timed regular
automata accept only traces that end with events from X, not with ¢, and timed Biichi automata accept
only infinite traces in which an infinite number of events from ¥ occur. These restrictions were made
merely to simplify the exposition, and both can easily be removed.

In analogy to the untimed model, we make the assumption that a supervisor can only enable or
disable events rather than force them upon the plant. This is a strong model restriction because in most
systems the supervisor can actually force or schedule events, just like the plant. The semantics of the
presented model will be modified to accommodate scheduling capabilities of the supervisor in a later

publication.
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In this paper we make the implicit assumption that there is no time delay between the plant and the
supervisor. Li and Wonham [21] relaxed this assumption in a setting of untimed traces. Further research
needs to be done to incorporate into the framework an accurate and yet computationally feasible model

of communication delay between the controller and plant.
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A Proofs

Lemma A.1 Let BC S C E® and L C T* such that L™ = S and B is closed relative to S. Let
K =pr(B)NL. Then

i) pr(K) = pr(B)
i) K* =B
Proof of Lemma A.1l:

i) We show containment in two directions.

pr(K) C pr(B) — We have
pr(K) = prlpr(B) N L] C pr(B) N pr(L) = pr(B).

pr(B) C pr(K) — As B is closed relative to S = L™, we have

pr(B)*NL*® = B
= [pr(BYNL]*® = B
= K*® = B

= pr(K) 2 pr(K*®) = pr(B)

ii) See proof of (i).

Proof of Theorem 6.1:
(if) Since pr(B) is nonempty and controllable wrt. S it follows from Theorem 6.1 that there exists
a supervisor f such that Ly = pr(B). By the definition of S,

S; = pr(B)®NS
= B.

Furthermore, pr(Sy) = pr(B) = Lo, which implies that f is non-blocking.
(only if) If there exists a non-blocking supervisor f such that Sy = B, then

Lo = pr(Sy) = pr(B).
From Theorem 5.1, pr(B) is controllable wrt. pr(S). The definition of Sy yields

B = 5
= I¥NnS
= pr(B)*NS.

And so B is closed relative to S. O
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Proof of Theorem 6.3:
i) This follows directly from the fact that pr(U; B;) = U;pr(B;) and from Theorem 5.2(i).

ii) Let B; and B; be closed relative to S. Then

pr(BiUB)*NS (pr(B1)VUpr(B2))>* NS
pr(B1)® Upr(B2)* NS

B, U B,.

Thus B; U By is closed relative to S.
iii) Denote by U;B; the exhaustive union of all elements of CF*“(B). Let
B' = pr(U; B;)® N S.
We first show that pr(BT7) is controllable wrt. pr(S).

pr(B") C prlpr(UiB:)*]npr(S)
= pr(UiB;) Npr(S)
U,-pr(B,-)

Conversely if v € U;pr(B), then v(t) = p(t),Vt € I, for some i and p € B;. Since B; € S,
also p € S. Thus, p € pr(U;B;)* NS = BT, and it follows that v € pr(BT'). This shows
that pr(B1) = U;pr(B;). Now since for each i, pr(B;) is a controllable language, it follows from
Theorem 5.2 that pr(B?") is controllable.

Furthermore,

pr(BH)*® NS pripr(UiB)® NS|1® NS
pT(U;B,')°° ns

BT,

N

So BT is closed relative to S.
We show now that BT is a subset of B. For this we use the assumption that B is closed relative
to S,

B! = pr(U;B;)®* NS C pr(B)®* NS = B.
Thus BT is in CF*“[S, £,)(B).
It is easy to see that BT is supremal. Since B; C B C S, B; C U;B; C pr(U; B;)™ it is clear that
for each i, B; C BT. Thus sup CF**[S, £,](B) = BT.

Proof of Theorem 9.1:
The following proof makes use of the results of Section 8.3. To see that the propositions apply, notice

that the untime function is defined in terms of an automaton A that accepts L.
To simplify the exposition, first observe that controllability condition for an untimed language K%

wrt. 4! and L' is equivalent to the following:

pr(Kut)(E:t)t npr(Lut) g pr(Kut)
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i) Let K% be any language that is L%*-closed and controllable wrt. L*! and £, U{7}. We show that

K*' = time(K"¥!) is L*-closed and controllable wrt. L* and £,.

Controllability:

$ 488

Closedness:

pr(K%)(Zy U {r})* N pr(L*)
time[pr(K¥*)(Sy U {T})* N pr(L**)]

time[pr(K**)(Zy U {7})*] N time[pr(L¥?)]
time[pr(K¥*))(Zu U {e} x IRy) N time[pr(L**)]
pr(time[K¥1])(Zy U {e} x IRy) N pr(time[L**])

pr(K*)(Tu U {e} x Ry) N pr(LY)

pr(K*)nL¥ = K%

LR R

time[pr(K**)N LY =
time[pr(K"*)] N time[L¥] =
pritime(K¥*)] N time[L¥Y] =
prK* NIt =

time[K"*]
time[ K¥Y]
time[K¥Y]
Kt

N N 1IN N IN iN

pr(K™)
time[pr(K%'))
time[pr(K*'))
time[pr(K"*))
pr(time[K**))
pr(K*)

ii) We need to prove that if the timed language K* is L*-closed and controllable wrt. L* and ¥, then
K4 = untime(K?") is closed and controllable wrt. L% and X, U {r}. We proceed by first showing

the controllability of K¥* and then its L%*-controllability.

Controllability:

L4484

=

Thus K% = untime(K") is controllable wrt. L% and T, U {7}.

pr(K*)((Zu U {e}) x Ry) N pr(L?)

untime[pr(K*)((Zy U {€}) x R4) N pr(LY)]
untime[pr(K*)((Zy U {€}) x IRy)] N untime[pr(L*)]
untime[pr(K*)}(Sy U {r})* N pr(untime(L?))
pr(untime(K*))(Zy U {7})* N pr(untime(L*))

pr(K¥)(Zy U {r})* N pr(L¥)

Closedness:
pr(KY)N L} K?
= untime[pr(K*)NL'] = untime(K?)
= untime[pr(K*)] N untime[L}] = untime(K*)
= pr[untime(K*)] N untime[L}] = untime(K*)
= priK¥INL¥ = K%

Thus K% = untime(K?) is L%-closed.
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Proof of Theorem 9.3:

Let B“' be an untimed language that is controllable and closed. We need to show that B! =
time(B"*) is controllable and closed.
Controllability:

Analogous to proof of Theorem 9.1.
Closedness:

We need to show that pr{time(B*')]* N time(S¥*) C time(B*!). Let v be in prltime(B¥*)]*® n
untime(S¥*). We first have the following.

v € time(S*') = untime(v) € S*

Also the following implications hold.

v € pr[time(B¥)]®
= pr(v) C prltime(B*")]
= untime(pr(v)) C untime(pr[time(B*!)])
= pr(untime(v)) C prluntime(time(B¥))]
= pr(untime(v)) C pr(B%)
= untime(v) € pr(Bv)®

From this we conclude that
untime(v) € pr(B%)>® NS = BY!
= v € time(untime(v)) C time(B%?)

B Reduction from 1nﬁnite Traces to Finite Traces

B.1 Languages of Untimed Traces

For the case where the specification language A C S is closed wrt. the plant S, we show the reduction
of the supervisory control problem for infinite untimed traces to a supervisory control problem for finite

traces.

Theorem B.1 Let L C £*, S C T such that L™ = S and pr(L) = pr(S).

i) If B C S is closed relative to S and pr(B) is [pr(S), Zy]-controllable, then K = pr(B) N L is
L-closed, [L, T,]-controllable and pr(K*°) = pr(K).

#) If K C L is L-closed and [L, I,]-controllable and pr(K*) = pr(K) then B = K> C S is closed
relative to S and [pr(S), Ly]-controllable.

Proof:

i) We show that K = pr(B) N L is L-closed and [L, Z]-controllable and pr(K*°) = pr(K).
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Controllability:

To show controllability of K, observe that pr(K) = pr(B) because of Lemma A.1. Then, because
pr(L) = pr(S), we have that pr(K) is controllable wrt. pr(L), which implies that K is controllable
wrt. L.

Closedness:

Clearly, because of the above, K = pr(B)N L = pr(K)N L.

pr(K*) = pr(K):

From the above, K® = B. Hence pr(K*®) = pr(B) = pr(K).
ii) Again, we show controllability and closedness.

Controllability:

Clearly, K C S. To show controllability, it is sufficient to show that pr(K) = pr(B). This
follows from pr(B) = pr(K*) = pr(K).

Closedness:

This follows from the L-closedness of K. Indeed,

pr(B)®* NS = pr(B)®NL®
= [pr(B)NL]®
= [pr(K)NLJ
= K%
= B

0

The previous theorem suggests the introduction of a new class of sublanguages. Let H*(K) be the

class of prefiz-proper sublanguages of K, i.e.
H'(K)={T C K |pr(T%)=pr(T)}.

In other words, a language is prefix-proper if every string is a proper prefix of some other string in the
language. Let CFH"[L, Z4)(K) be the intersection of C*[L, Zu)(K), F*[L](K) and H*(K).

Lemma B.1
i) The class H*(K) is closed under union.

ii) The class CFH*[L,Tu)(K) is closed under union and has a supremal element,
denoted sup CFH*[L, Lu)(K).
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Proof:

i) Let @ be the empty language. Clearly @ € H*(K), so H*(K) is non-empty. Let Ty, T; € H*(K ).
Clearly, T UT; C K. Also note that for any T € H*(K) we always have pr(T*) C pr(T). In
addition,

pr(1UT]®) D pr(Tf° UTEP)

pr(T°) U pr(T5°)

pr(T1) U pr(T2)

= pr(TiVUTy).

This implies that 73 U T, € H*(K).

ii) This follows directly from (i) and Theorem 3.1.

Corollary B.1 Let L,E C £* and A C § C ¥ be such that L = S, pr(L) = pr(S) and E =
pr(A) N L. If A is closed relative to S then sup CF[S, ,](A) = [sup CFH*[L, £,)(E)]*™.

Proof: We show containment in two directions. For notational convenience, we abbreviate AT =
sup CF“[S, £,](A) and ET = sup CFH*[L, £,)(E).
LHS C RHS:

If A is closed relative to S, then, because of Theorem 3.4, AT exists. Let K = pr(AT)N L. By
Lemma A.1 we have K® = A'!. If K C ET then, we have because of the monotonicity of the infinite
limit operator, AT = K C (ET)>.

It remains to show that K C E1. As pr(A') is [pr(S), Ey)-controllable and AT is S-closed, the
language K = i)r(AT) ALis [L, Eu]-controllable and L-closed and pr(K*) = pr(K) (Theorem B.1).
We have

K=pr(AY)NLCpr(A)NL=E
and so K € CFH*[L,X,)(E) and thus K C ET.
RHS C LHS:

As ET is L-closed and [L,Z,]-controllable and pr{(ET)®] = pr(ET), (ET)*® is closed relative to
S and [pr(S), Zu]-controllable (Theorem B.1). In addition, as ET C E, we also have because of the
monotonicity of the infinite limit, (ET)*® C E* = A (LemmaA.1). Therefore (ET)® isin CF¥[S, T,](A)

and hence contained in AT. ul

From the above, the supremal controllable and closed sublanguage of a given specification language
for the infinite trace case can be indirectly computed by a fixpoint algorithm on related finite languages.
The following theorem states that a solution to the supervisory control problem for infinite traces

can be determined in polynomial time.

Theorem B.2 Let Ag and A4 be deterministic Buchi automata for the plant S and the specification
A. If the plant language is closed relative to the specification language, then the complezity of solving
the supervisory control problem is O(JAs|?|Aal?).
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Proof: By Theorem 3.4 and Corollary B.1, we need only compute [sup CFH*[L, E,](E)]*®, where L is
such that L* = S and pr(L) = pr(S), and E = pr(A)N L.

From the Biichi automaton for the plant .As we can derive a finite regular automaton Ap such that
L(AL) = L, and L has the desired properties. Simply interpret the Biichi automaton as a regular finite
trace automaton where the Biichi recurrence states are final states. An automaton Ag for F is obtained
by forming E = pr(A)NL. Taking the prefixes is O(|44|%). The automaton Ag inherits the structure of
Apr. Its cross-product with Ay will thus have |As||.A4| states. Computing sup CF*[L, X,]}(E) using the
finite automata was shown to be quadratic in the cross-product size. The computation of the language
sup CFH*[L,Z,)(E) is similar except that it also takes into account the proper-prefix property, by
simply requiring every state to have an outgoing transition.

Finally the limit operation is done by replacing the final states with Biichi states, and interpreting

the automaton as a Biichi automaton. From this the theorem follows. 0

B.2 Languages of Timed Traces
B.2.1 Reduction to Untimed Supervisory Control Problem

As for the untimed supervisory problem, if the plant of infinite timed traces is closed relative to its
specification, then the supervisory control problem reduces to that over finite timed traces. In the rest
of this section, we assume that the plant language is closed relative to its specification. The supremal
element may be characterized in terms of the supremal element of a corresponding finite trace class of
languages. The following definition and results match those of subsection B.1. The proofs are similar

and are omitted.

Theorem B.3 Let L be a language of finite timed traces over £ and S @ language of infinite timed
traces over T such that L*° = S and pr(L) = pr(S).

i) If B C S is closed relative to S and pr(B) is [pr(S), Ly]-controllable, then K = pr(B)N L is
L-closed, [L, y]-controllable and pr(K*) = pr(K).

#1) If K C L is L-closed and [L, T,]-controllable and pr(K*) = pr(K) then B = K® C S is closed
relative to S and [pr(S), Ty]-controllable. 0

Let K be a language of finite timed traces. Define H**(K) be the class of prefiz-proper timed
sublanguages of K, i.e.

H"*(K)={T C K | pr(T™) = pr(T)}.
Let CFH"*[L,T,])(K) be the intersection of C**[L, Z,)(K), F>*[L)(K) and H'*(K).
Lemma B.2
i) The class H**(K) is closed under union.
ii) The class CFM"*[L,E,)(K) is closed under union and has a supremal element,

denoted sup CFH'*[L, T,](K). o
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Corollary B.2 Let L be a language of finite timed traces over X, and both S and A be languages of
infinite timed traces. Suppose L = S, pr(L) = pr(S) end E = pr(A)N L. If A is closed relative to S
then

sup CF“[S, £4](A) = [sup CFH"*[L, S.)(E)]™.

ju]

Theorem B.4 Let S be an infinite timed trace plant model and A be a specification language for the

plant such that A is closed relative to S. The following three statements are equivalent.
i) The supervisory control problem has a non-trivial solution.
ii) sup CF"“[S, £,](4) # @.
i1) supCF *[L,T,)(E) # D.
where L and E are as in the hypothesis of Corollary B.2,i.e. L = S, pr(L) = pr(S) and E = pr(A)NL.

Proof: This follows directly from Theorems 6.1 and 6.3 and Corollary B.2. m]

The supervisory control problem for infinite timed traces can first be reduced to a finite timed trace
problem by Corollary B.2 of Section B.2. The derived finite timed trace problem must also consider
the proper-prefix property of languages. Theorem 9.1 and Corollary 9.1 can easily be adapted to
accommodate this property. Combining all these results leads to the following characterization for the

supervisory control problem over infinite timed traces.

Theorem B.5 Let L be a language of finite timed traces over X, and both S and A be languages of
infinite timed traces. Suppose L™ = S, pr(L) = pr(S) and E = pr(A)N L. If A is closed relative to S
then

sup CFH[S, T,)(A) = [sup CFH**[L, T,)(E))* = [time(sup CFH* [untime(L), T,,U{r}](untime( E)))]®.

O

B.2.2 Synthesis Procedure

Thus given two languages of infinite timed traces, it suffices to solve a revised control problem over
untimed languages of finite traces; when the untimed supremal controllable and closed language is
timed and its limit is taken it yields the corresponding supremal controllable and closed language of
infinite timed traces. When the problem is given in terms of deterministic timed Biichi automata, a

supervisor may be synthesized according to the procedure shown in Figure 14.

Theorem B.6 Let A and S be languages of infinite timed traces represented by deterministic timed
Biichi automata. If A is closed relative to S, then there is an algorithm to solve the supervisory control

problem for infinite limed traces.
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Proof: In light of Theorems B.5 and B.2, it suffices to show how to construct untimed automata for
the languages untime(L) and untime(E), where L® = S, pr(L) = pr(S) and E = pr(A) N L. We first
construct these automata and then prove that they accept languages satisfying these properties.

As for finite traces, we first obtain the deterministic synchronized automata Ay and A% from the
deterministic timed automata .44 for A and Ags for S. These automata are transformed into untimed
Biichi automata Aj§ and A7 accepting their untimed languages S** = untime(S) and A% = untime(A),
as given by Lemma 8.3. It is a standard operation to derive from a Biichi automaton an automaton on
finite strings that represents the original language: a state is final if and only if it is final in the original

Biichi automaton. Let Ag' be the regular automaton so obtained. We remove from .A%"’s final set every

state which it is not reachable from itself, giving a new automaton .A§”. Now A¥" accepts L*! such that

(L**)* = S** and pr(L*') = pr(S**). It is also a standard procedure to obtain from the automaton 4",
an automaton accepting the prefixes of A¥*. Call this new automaton A/Y. Now take the crossproduct
of A% and A". This automaton accepts E%’.

We now show that the languages L = time(L*') and E = time(E"?) satisfy the hypothesis of
Theorem B.5. For L, we have

pr(L) = pr(time(L*))
= time(pr(L*"))
= time(pr(S™)
= pr(time(S™"))
= pr(S)

and

Lw

(time(L¥*))>®
time((L9))
time(S™*)

= S

Furthermore
E = time(E™)
= time(pr(A**) N L*)
= time(pr(A**)) N time(L*")
= pr(time(A*))NL
= pr(4)NnL

o

The solution has the same complexity up to an exponential as for languages of finite timed traces,

since the additional computations are all polynomial operations.
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request;z < 5 & y > 1;reset{z}

refuse;z < 2 & y < 3;reset{y}

grant;z < 3;reset{y}

Figure 1: Timed Regular Automaton for a simple language of request and grant events

?grant
A A
221 , .
reques
1.5 i o TTTINTTTTV
R ol V| |
. . son '
(v) o7 (i) do 24
[ ]
TTT TTTTTTT
)
]
i
) refuse
'
4 4 E
request '
11 wdecaaaas —cccece /
@A) 1.1 (i) 0.9
TTT T

Figure 2: Diagram showing derivation of untime(v)
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TIMED PROBLEM UNTIMED PROBLEM

L Lt

Et untimne Eut

Ty I, U{r}
{} solve

sup CF'*[L, B,)(EY) tg sup CF*[L¥*, Z, U {7}}(E*?)

Figure 3: Diagram of synthesis procedure

a;z = 1; reset{z} b;z = 1; reset{z}

. u;0 < z < 1; reset{z} b;z = 1; reset{z}
0 U

Figure 4: TBA Ag: for plant S*

TIMED PROBLEM UNTIMED PROBLEM
St Sut
At unlime Aut
Ty Ty U{r}
4 cémpute

UCF“[S*, T, U {7}](A*Y)

{ derive

AL eCFeS BJAY A e cF[s™, B, U {r})(4%)

Figure 5: Synthesis procedure for infinite timed traces
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/

reset{z1}

set_temperature (c) ;
TRUE ; reset{z2}

deteriorate (u);

Q< 5 & x4 > 4; reset{}

enter_gas (c); TRUE/,

0 \
set_temperature (c);
TRUE ; reset{z.}

initialize (c);
TRUE ; reset{}

enter_gas (c); TRUE ;

reset{z};

clean (u);
z1 > 1& x5 > 1; reset{}

/

N

Figure 6: Plant model L
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set.temperature; TRUE ; reset{}
enter_gas; TRUE ; reset{}

initialize;
TRUE ; reset{]
reset{}

clean; TRUE ; reset{}

Figure 7: Specification model E
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Figure 8: Time regions

46

T2
4_ £
1
1 5 X




inilialize;
TRUE ;
reset{}

g0,90)

enter_gas; TRUE ;
reset(z3)

set_temperature;
z3 > 1; reset{}

clean; TRUE ;
reset{}

Figure 9: Supremal [L, £,]-controllable and L-closed sublanguage

request; y < 1; reset{z}
©

refuse; TRUE; reset{y}

request;z < 5 & y > 1; reset{z}

refuse; y < 2; reset{y}

grant;y < 5; reset{y}

Figure 10: TBA plant model for a process requesting a resource
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grant; z < 6; reset{z} refuse/ grant; TRUE; reset{z}
request; TRUE; reset{} request; TRUE; reset{}

grant; z > 6; reset{z} ,
U§)
refuse; TRUE; reset{z}

Figure 11: Specification TBA A4 requiring all responses to be grants that are
made within 6 seconds of each other

0<2z<2:v={grant, refuse}
2 < z < 5:7 = {grant, refuse, request} v = {grant, refuse}

request; reset{}
grant; reset{z}

Figure 12: Timed supervisor for non-terminating process example
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(qo,tﬁ) 4
3
______________ 2
1
(QIrq{)) 1 2 3 4 5
4
(vid) 5 5
3 i
(g0, 01) __.Trefuse 3
! i
(g2,00) 123435 ;request
y/z 5
(i) 5 5

(qo,ql;) (qoaqé) 1 2 3 4 5
. Erequest
(v 5=~ . e
3 e e e 3
9 2
1 1
(e,e) 12345 (@.e) 12345

Figure 13: Schematic diagram of untiming construction
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INFINITE TRACES

FINITE TRACES

INFINITE TRACES

TIMED PROBLEM

Zu

sup CFH**[L,Z,](E)

Y

sup CF*¥ [S, Z.1(4)

UNTIMED PROBLEM

vt
“721'7}"6 Eut
. U{r}
{ solve

Yime sup CFH*[L*', E, U {r}(E*)

Figure 14: Synthesis procedure for infinite timed traces if A closed wrt. S
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